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Abstract 
Scientific data is continuously generated throughout the 
world.  However, analyses of these data are typically per-
formed exactly once and on a small fragment of recently 
generated data. Ideally, data analysis would be a continuous 
process that uses all the data available at the time, and 
would be automatically re-run and updated when new data 
appears. We present a framework for automated discovery 
from data repositories that tests user-provided hypotheses 
using expert-grade data analysis strategies, and reassesses 
hypotheses when more data becomes available. Novel con-
tributions of this approach include a framework to trigger 
new analyses appropriate for the available data through lines 
of inquiry that support progressive hypothesis evolution, 
and a representation of hypothesis revisions with prove-
nance records that can be used to inspect the results. We 
implemented our approach in the DISK framework, and 
evaluated it using two scenarios from cancer multi-omics: 1) 
data for new patients becomes available over time, 2) new 
types of data for the same patients are released. We show 
that in all scenarios DISK updates the confidence on the 
original hypotheses as it automatically analyzes new data.  

 Introduction   
In many areas of science, sensors and instruments are con-
tinuously collecting data.  Yet most research projects ana-
lyze data at a particular point in time, and once articles are 
published they are rarely revisited to account for new data.  
In some cases, this makes sense since more data may only 
be tangentially related, and thus may not be relevant to 
include in a joint analysis. However, in many cases the 
availability of additional data may significantly affect prior 
results, by confirming with additional evidence or invali-
dating them. In addition, the new data may enable new 
types of analyses, leading to important revisions of prior 
findings or to entirely new findings.   
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 Our goal is to automatically and continuously analyze 
scientific data as it becomes available, so scientists can be 
alerted if their prior studies are affected or if new results 
are gleamed.  In prior work, we developed an approach to 
represent hypotheses and link them to relevant data to be 
analyzed, test them through lines of inquiry that capture 
expert-grade data analysis strategies, and aggregate the 
analysis results through meta-reasoning to combine the 
evidence gathered and generate revised hypotheses and 
confidence values [Gil et al 2016].  We implemented our 
approach in the DISK (Automated DIscovery of Scientific 
Knowledge) framework, and demonstrated that DISK 
could reproduce the results from a seminal cancer article 
that reported on comprehensive analyses of two open data 
repositories.   
 In this paper, we report on new work to address auto-
mated and continuous hypothesis revision as new data be-
comes available.  The novel contributions of this work are: 
1) a framework to continuously select appropriate data to 
test the hypotheses under consideration and to launch ap-
propriate analyses, 2) a hypothesis representation that can 
represent hypothesis evolution along with supporting evi-
dence, and 3) an implementation of our approach in DISK.  
We present a preliminary evaluation in cancer multi-omics, 
where new data and new kinds of observations become 
available over time and affect prior findings.   

 Motivating Scenarios from Multi-Omics 
In many science domains, new data continuously becomes 
available to researchers.  This is the case with cancer mul-
ti-omics, where data for new patients and new kinds of 
data are generated continuously. Multi-omic analysis ena-
bles the study of the genome (genomics data), its products, 
which include expressed RNAs and proteins (transcriptom-
ics and proteomics data respectively), and how those prod-
ucts interact amongst themselves and with the genome to 
drive cell behavior (phenotypic data) [Ritchie et al 2015]. 
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Understanding these relationships is crucial to uncover the 
mechanisms that lead to cancer and other diseases. 

Projects like The Cancer Genome Atlas (TCGA) 
[Tomczak et al 2015] and the associated Clinical Proteo-
mic Tumor Analysis Consortium (CPTAC) [Rudnick et al. 
2016] are creating large repositories of omics data that are 
rapidly approaching petabyte scale. Data is generated by 
dozens of sites for thousands of patients (and non-patients) 
with different types of cancer. The data is collected in a 
well specified and relatively uniform way that facilitates 
aggregate analysis. These repositories include diverse om-
ics data, such as multiple types of genomic data (DNA 
sequencing, RNA transcriptomics, epigenetic) and prote-
omics, as well as pathologic data from biopsy (H+E), radi-
omic data (CT, MRI), and extensive clinical annota-
tions. Analyses of both TCGA and CPTAC data constantly 
appear in the literature, but those studies are not commonly 
revised in light of new data even though their results may 
be changed in significant ways. For example, TCGA has 
been growing at a rate of 30 TB/year since its initial con-
struction [Robbins et al 2013, Stephens et al 2015]. Our 
goal is to develop a framework that can automatically re-
consider the hypotheses and results of the initial published 
studies given the availability of new data.  We describe 
two common scenarios that influence hypothesis testing as 
new data appears. 

Availability of Additional Data of the Same Type 
Adjusting Confidence on Hypotheses.  High-throughput 
omics data is continuously being generated. It is often the 
case that at the beginning of a study, researchers only have 
access to an initial dataset from a small set of patients. Lat-
er on when data for additional patients becomes available, 
the hypotheses might need to be re-evaluated to update the 
confidence estimates in light of the new cases. For exam-
ple, researchers are often interested in testing the hypothe-
sis where a protein of interest is abundant within a given 
tumor type. If a small set of cases is available, they may 
find weak evidence for the association.  But as more cases 
are acquired, the scientists may become either increasingly 
or decreasingly confident in the association.  

Testing New Hypotheses. More data also allows scientists 
to test additional hypotheses. For example, an initial, small 
dataset may reveal two patient subgroups each defined by a 
particular set of shared genes.  As more cases are added to 
the study, it may become possible to hypothesize addition-
al subgroups given the larger genetic variations when there 
are more individuals. 

Availability of New Kinds of Data  
Considering New Analyses.  Different types of data effec-
tively represent alternative sources of observations that can 

be combined to get stronger evidence for a hypothesis. A 
challenge in large-scale studies is that data of diverse types 
will often arrive incrementally and unevenly.  For example, 
in the TCGA and CPTAC studies of colon cancer, tran-
scriptomic data was collected for nearly three years before 
proteomic data.  An initial analysis of the transcriptomic 
data available could fail to conclusively demonstrate the 
association of a protein with a tumor type. With both tran-
scriptomics and proteomics data available, a joint analysis 
could reveal that while the native form of the protein may 
not be expressed, a mutant form may be.  There is an anal-
ogous situation when proteomics data is available first. 
Researchers would look for the standard reference protein 
instead of a mutant form of the protein as suggested by the 
genomics data, which would lead to a lack of support for 
the expression of the protein. Notably, it is quite common 
for proteomics and genomics data to be poorly correlated 
[Maier et al 2009].  As multiple types of data become 
available, the evidence for the hypothesis can change.   

Related Work 
Machine learning algorithms have some commonalities 
with our work in that they do some form of hypothesis 
generation and hypothesis revision [Mitchell 1997].  In 
general, learning algorithms explore a large hypothesis 
space and are designed to generate and revise hypotheses 
(models) as they run.  Many algorithms have an online 
version that updates the learned model when new data be-
comes available [Shalev-Shwartz 2012].  For example, 
latent Dirichlet allocation (LDA) [Blei et al 2003] is a pop-
ular algorithm for topic modeling that can process all the 
documents available [McCallum 2002].  Its online version 
builds the topic models as it processes documents incre-
mentally [Hoffman et al 2010; Řehůřek 2009; Langford 
2011]. Online algorithms generate an initial model (a hy-
pothesis) and then revise it as they process new data. A 
major difference with our work is that our analysis steps do 
more than just learning from data, for example some steps 
may match a patient’s data with a reference human dataset 
or assembling a group of peptides into a single protein.  
Another major difference with our work is that we need the 
ability to formulate new goals and carry out new types of 
analyses when new data and new kinds of data become 
available, which may involve new analytic tools or algo-
rithms different form the original ones.  We need a frame-
work that can formulate the data analysis and learning 
goals that can be pursued with the data available, and to 
change what those goals and analyses are when new data 
arrives.  In addition, given the size of the hypothesis space 
in the science domains we are tackling, we need the ability 
to direct the system with some initial hypotheses to be test-
ed, and to be able to decide what data is relevant to these 



hypotheses in the first place.  Usually in machine learning 
it is assumed that the system will process all the data that it 
is given, and in this sense our system is adding a meta-
reasoning layer to set up its own analytic and learning 
goals [Cox and Raja 2011; Kim et al 2011].  Our user hy-
potheses are akin to meta-level goals, and our lines of in-
quiry and workflows akin to problem-solving strategies.  
Our novel contribution to meta-reasoning is the formula-
tion of meta-reasoning goals and strategies for scientific 
discovery.   
 Another closely related area of research is learning from 
streaming data [Gama 2012].  These are systems that pro-
cess through large amounts of data that is continuously 
coming in, perhaps in several streams of different types.  
They are often given a type of pattern (or hypothesis), and 
their goal is to learn how that pattern manifests in the data.  
The main challenge addressed in this line of research is 
memory management, that is, how much prior data to re-
process and how much to simply drop in order to scale to 
the very large data sizes being streamed. While these ap-
proaches always use the same data analysis algorithm, we 
need a framework that can pursue different kinds of data 
analysis that are appropriate for the available data. 
 The Robot Scientist [King et al 2009] is able to formu-
late hypotheses, test them through physical experiments, 
and revise them based on the experiment results.  The sys-
tem formulates and generates experiments to collect new 
data, while in our work we are simply recipients of data 
that others collect.  While the Robot Scientist does one 
kind of analysis for the same kind of data, we are interested 
in situations where there may be different kinds of data and 
different kinds of analyses done. 

Other work has proposed models for hypothesis repre-
sentation. EXPO [Soldatova and King 2006] and nanopub-
lications [Groth et al 2010] define general classes to anno-
tate static hypothesis statements from papers. The HyQue 
ontology [Callahan et al 2011] describes an event-based 
model to represent and assess hypotheses created by users, 
which are then evaluated against a knowledge base inte-
grating information from multiple sources. HELO [Solda-
tova et al 2013] extends hypothesis statements with proba-
bilities and reasons over them. In contrast, our model rep-
resents not just the hypotheses but also their supporting 
evidence as computational provenance records, as well as 
their evolution as new data is added and hypothesis state-
ments and confidence scores are updated.  

Background on DISK: Automated Hypothesis 
Testing with Large Data Repositories 

DISK offers a novel framework for automating hypothesis 
analysis over large repositories of scientific data [Gil et al 

2016]. We give a brief overview of DISK through a simple 
example. 
 DISK assumes that all the datasets available in a data 
repository are described with metadata in a Data Catalog.  
Each dataset has a set of metadata assertions.  DISK also 
assumes that these metadata  are  expressed  using  domain   
ontologies represented in the W3C OWL [McGuiness and 
van Harmelen 2004] and RDF [Manola and Miller 2004] 
Semantic Web standards.  Metadata assertions are triples 
of the form <object property value>, using namespaces to 
indicate the source ontology for each object and term.  The 
Data Catalog supports queries that specify the desired 
metadata properties of the desired datasets.  These queries 
are expressed in the W3C SPARQL query standard [Pru-
d'hommeaux and Seaborne 2008]. 
 DISK is given an initial hypothesis to be investigated.  
For the science problems that we are interested in, and cer-
tainly cancer omics, the size of the hypothesis space (thou-
sands of genes and hundreds of thousands of proteins and 
all their mutations result in myriad combinations) requires 
that the system is directed with some initial hypotheses to 
be tested. Domain ontologies of entities and relationships 
are used to create logic predicates and assertions to formu-
late hypotheses. The user provides a hypothesis statement 
by first selecting a class of hypotheses, and then fill-in-the-
blanks to instantiate a specific hypothesis.  It is straight-
forward to add additional types of hypotheses. In DISK, a 
hypothesis consists of: 1) a hypothesis bundle, containing 
individual statements, 2) statement qualifiers that are at-
tached to a statement or a group of statements of the hy-
pothesis and typically contain a confidence value, 3) a hy-
pothesis provenance with the information of the analyses 
carried out to gather evidence about the hypothesis, and 4) 
a hypothesis history with links to previous hypotheses that 
were revised to produce the current one.   
 Figure 1 illustrates our hypothesis representation with an 
example, where ovals are objects and arrows are relation-
ships between them.  In this case, there is a single hypothe-
sis statement, which is that protein kinase C delta-binding 

 
Figure 1.  Hypothesis statements in DISK are annotated with 
statement qualifiers as well as provenance. 



protein (PRKCDBP) is expressed in a patient sample.    
The  concepts  for  protein and  patientSample  both come 
from a biology ontology, and the expressedIn relation be-
tween them is from an ontology that we have created to 
form statements in this domain. The qualifier shows a con-
fidence value of 0.2.  The provenance shows that the con-
fidence value was obtained by running two workflows, W1 
and W2, and their results were combined with one meta-
workflow, M1.  The properties used, derivedFrom, and 
wasGeneratedBy are from the W3C PROV provenance 
standard [Lebo et al 2013], and hasWorkflowTemplate 
from the OPMW ontology to represent workflows [Garijo 
et al 2016]. We will illustrate the representation of hypoth-
esis history in a later section. 
 To test a given hypothesis, DISK draws from a library of 
lines of inquiry.  A line of inquiry captures a possible ap-
proach to hypothesis testing, and includes: 1) a hypothesis 
pattern that specifies what types of hypothesis statements 
the line of inquiry is designed to test, 2) a data query pat-
tern to retrieve relevant data, 3) a set of computational 
workflows that specify the steps to analyze the data select-
ed, and 4) a set of meta-workflows that specify how to 
combine the results of the analyses and generate a revised 
hypothesis and/or confidence values.  For example, to test 
the type of hypothesis that a protein is associated with a 
certain tumor type, we could create a line of inquiry for 
proteomic analysis.  The line of inquiry would have a que-
ry pattern to retrieve proteomic data from samples taken 
from patients that have that tumor type, a workflow that 
would use that data to do a proteomics analysis to look for 
likely proteins that appear in the samples, and a meta-
workflow to generate a confidence value based on the 
amount of data and the type of algorithms used in the anal-
ysis.  
 Figure 2 illustrates this example of a line of inquiry. 
Note that the hypothesis pattern draws terms from two 
namespaces: bio, for a general biology ontology, and hyp, 
for a small ontology that we have developed to express 
hypotheses in the domain of multi-omics.  The variables in 
the hypothesis pattern and in the data query pattern are 
indicated with a question mark (and do not have 
namespaces), and when the patterns are matched against 
the hypothesis statement and Data Catalog entries respec-
tively then the variables are bound to matching objects.  
The query pattern is a SPARQL query that can be sent to 
the Data Catalog.  The workflows and meta-workflow in-
clude bindings, which express how the variables corre-
sponding to datasets in the Data Catalog should be mapped 
to input variables of the workflow in question. For meta-
workflows, we include additional information about which 
input variable of the meta-workflow corresponds to the 
hypothesis, and which output variable of the meta-
workflow corresponds to the revised hypothesis. 

 To test a hypothesis, we match the given hypothesis 
statement against the hypothesis pattern of all the lines of 
inquiry available to see which ones are relevant.  We then 
run the query patterns for each to see which ones match 
with some dataset in the Data Catalog.  Those that have 
matching datasets can be triggered. When a line of inquiry 
is triggered, its workflows are executed and their results 
are input to its meta-workflows.  DISK uses the WINGS 
workflow system [Gil et al 2011a; Gil et al 2011b] for both 
workflows and meta-workflows.  The result of a meta-
workflow is always a hypothesis revision, which can be 
either an updated confidence value for the initial hypothe-
sis or a different hypothesis.  DISK can formulate new 
hypotheses by refining user-provided hypothesis state-
ments. For example, in the omics domain, DISK is aware 
of the concept of mutations. As part of its automated anal-
ysis, DISK tests both the user-defined hypothesis and mu-
tation-related revisions thereof. In the future, we plan to 
extend DISK so it can explore a wider class of new hy-
potheses based upon examination of user-defined hypothe-
ses.  For example, in this domain, DISK might observe that 
a novel protein (not mentioned by the user) better supports 
their hypothesis.  For example, a proteogenomic analysis 
may reveal that a mutation of PRKCDBP is present in the 

 
Figure 2. A line of inquiry in DISK to test hypotheses about 
whether a protein is expressed in a patient’s sample. 



samples, rather than PRKCDBP itself as originally hypoth-
esized.  
 Confidence values for the hypotheses are set up in the 
meta-workflows.  Each sample analysis leads to counts for 
each protein.  These counts are converted to a probability 
value (range 0-1) by a domain-knowledge informed poste-
rior of P(obs|count).  P(obs|count) can be thought of as an 
estimator of the probability of a protein being present in a 
sample given a number of spectral counts that have been 
measured for it. It is derived from a null model in which 
spectral counts are measured for proteins that are known 
not to be present in a particular sample.  Multi-sample con-
fidence values are computed by aggregating individual 
sample p-values relative to a null distribution of proteins 
known to not be in any of multiple samples. 
 The DISK framework is designed to be general and ap-
plicable to other domains.  New domain ontologies, work-
flows, and meta-workflows would need to be designed.  
DISK poses strong requirements for the Data Catalog in 
order to support automated analysis.  DISK requires that 
data is collected in a well-defined and relatively uniform 
way that facilitates aggregation of the results. It also re-
quires that the Data Catalog has proper metadata, so that 
the workflows can express constraints about their data re-
quirements.  For TCGA and CPTAC all patient samples 
are collected with standardized protocols, and the datasets 
contain appropriate metadata.   
 More details about the general framework and underly-
ing algorithms in DISK can be found in [Gil et al 2016].  
The next section describes how we have extended this 
framework to support continuous data analysis and hy-
pothesis evolution.  

Continuous Data Analysis and Hypothesis  
Revision 

The framework that we have described offers a capability 
to test hypotheses by using available data.  However, we 
need additional capabilities to address the availability of 
new data or new types of data over time in order to address 
the motivating scenarios shown earlier.  This poses two 
major challenges:  

1. Selection of relevant data and analyses: As new data 
appears, only data that is relevant to the hypothesis 
should prompt new analyses.  If the new data is ir-
relevant, nothing should happen.  Once data is se-
lected, appropriate analytic methods should be run 
on the data to reassess the initial hypothesis.  Be-
cause the new data may represent a small increment 
over prior data, we need to be mindful use of execu-
tion resources and not re-execute analyses unneces-
sarily. 

2. Tracking hypothesis evolution: Given that many po-
tentially independent analyses can be carried out 

over time, the evolution of the original hypotheses 
must be documented.  This is important for inspect-
ability, reproducibility, and explanation. 

 There are several aspects that must be addressed.  As 
new data becomes available, there can be potentially many 
possible analyses that are relevant. Given that there are 
always limited computing resources, what are appropriate 
analyses to pursue?  There are many nuanced situations.  
First, combining different types of data is almost always 
better than analyzing a single type of data.  For example, if 
both proteomics and genomics data are available for the 
same set of patients it is in principle possible to do a prote-
omics analysis, a genomics analysis, or a combined prote-
ogenomics analysis, but the combined analysis is always 
the best course of action.  Second, analyzing all the data 
available is better even if it is unclear how to combine the 
results.  Consider a case where there is proteomics data for 
a large amount of patients and both proteomics and ge-
nomics data only for a different but smaller set of patients.  
It may be useful to do a proteomics analysis on the former 
and at the same time a proteogenomic analysis on the lat-
ter.  It may not be clear how to integrate the results from 
both analyses, but each analysis could contribute meaning-
ful evidence to the initial hypothesis.  We need to track 
how each dataset and analysis supports the hypotheses, and 
how the hypotheses evolve over time.  Third, some anal-
yses may be preferred to others.  For example, in prote-
omics fluorescence data is easier to obtain but provides 
weaker evidence than mass spectrometer data, so if both 
are available then the latter is preferred.  Fourth, past anal-
yses done to data should not be re-run when those analyses 
are independent of the new data. In other words, past anal-
yses should be tracked and the results reused as much as 
possible rather than unnecessarily executed so that execu-
tion resources are made available for other analyses.  This 
requires tracking what data was analyzed by what work-
flow to test what hypothesis.  In summary, the challenge in 
all these scenarios is to arbitrate and select which analyses 
to run and how to reflect the results in a revised hypothesis.   

Selection of Relevant Data and Analyses  
Building on our prior work on representing data analysis 
strategies as lines of inquiry, we create a selection and pri-
oritization approach to accommodate continuous data anal-
ysis and hypothesis revision as follows.  
 We design lines of inquiry for different combinations of 
types of data, so that the meta-workflow in each line of 
inquiry has the method to combine the results of the indi-
vidual workflows that each analyze some subset of the 
types of data in that line of inquiry.  These meta-workflows 
are challenging to design and this is a new area of research 
altogether.  When it is unclear how to integrate the anal-
yses of two types of data, then we do not create a com-



bined line of inquiry and instead we will have two separate 
ones.  For example it is unclear how to combine evidence 
from pathology data and genomics data, so we would 
create two separate lines of inquiry to analyze each type 
and each would generate a revised hypothesis reflecting the 
evidence provided by that type of data.  
 Lines of inquiry are matched against the original hy-
pothesis rather than against the latest revised hypothesis.  
The idea is that the new analysis would include the data 
that was available before plus the new data, so we can pro-
duce a new revision that by definition is based on more 
data than any prior revisions of the initial hypothesis.  If 
more data of the same type is available, then the same lines 
of inquiry will be triggered, but more data will be matched. 
 We annotate lines of inquiry based on the coverage of 
their analyses, and trigger only the broader ones.  For ex-
ample, the analysis done in a proteogenomics line of in-
quiry is more comprehensive than the analysis done in a 
proteomics line of inquiry.  These coverage annotations are 
now manually done, but they can be automated through 
workflow matching techniques that we developed in prior 
work [Garijo et al 2014].  Essentially, if the workflows of a 
line of inquiry are subworkflows of the workflows in an-
other one then the latter is more comprehensive. 
 In summary, lines of inquiry are first matched with their 
hypothesis pattern, determined applicable if there are da-
tasets retrieved by the query pattern, and then selected for 
execution based on their coverage annotations.  
 Prior execution results must be recorded and tracked to 
detect any opportunities for reuse.  For example, a few 
initial steps of a proteogenomics workflow may be the 
same as the steps in a proteomics workflow that was run 
before, and if so those computations should not be repeat-
ed.  Another situation is cumulative data of the same type.  
If samples from 50 patients have already undergone prote-
omics analysis and 20 more patients are added, then the 
original 50 do not need to be processed again as long as the 
earlier results are available to be combined with the results 
of the new 20 samples.  We do this by maintaining a prov-
enance catalog where each analysis run is described in de-
tail, including appropriate metadata for the data that was 
used (e.g., what patient, what kind of omics data, what 
cancer type). This requires that the initial datasets are well 
described with metadata in a Data Catalog, as is the case 
with the cancer multi-omic data in TCGA and CPTAC.   
 After execution, each of the triggered lines of inquiry 
results in a revised hypothesis, possibly with a new hy-
pothesis statement (or several) and a revised confidence 
value together with the workflows and meta-workflows 
that form their provenance. If only one line of inquiry was 
triggered (whether to analyze one or several types of data) 
then we will have a single revised hypothesis.  But if, as 
we mentioned above, there are types of data whose anal-
yses we do not know how to combine then an independent 

line of inquiry will be run for each type of data.  Each run 
will result in a revised hypothesis, each with a potentially 
different statement and confidence value.  All of them will 
be added as revisions of the initial hypothesis.  In all cases, 
we document the provenance of every revision as we de-
scribe next.  

 A Model for Representing Hypothesis Evolution 
Figure 3 gives an overview of the main classes and proper-
ties of the model we have developed for representing hy-
potheses. The namespace prefixes indicate whether a term 
is reused from a provenance ontology (in our case prov) or 
from a workflow ontology (in our case wings). The top of 
the figure shows the representation of the supporting evi-
dence as provenance records of workflows, meta-
workflows, and lines of inquiry.  These are the concepts 
that were used in the example of Figure 1.  The bottom of 
the figure focuses on the hypothesis evolution aspects. 
 Figure 4 sketches an example of a hypothesis revision 
using our model.  The initial hypothesis statement H1 is 
linked to all the triggered lines of inquiry, each linked in 

 
Figure 4.  Representing a hypothesis revision in DISK. 

 
Figure 3.  DISK model for hypothesis representation. 



turn to the original line of inquiry with its hypothesis pat-
tern and its data query pattern as well as the datasets that 
were retrieved and how they were used as bindings for the 
analysis workflows. The triggered line of inquiry’s meta-
workflow produces a revised hypothesis, possibly with a 
new statement or a new confidence value. This gives the 
revised hypothesis a detailed provenance record. Finally, 
the revised hypothesis is linked to the initial hypothesis. 

Hypotheses may be composed of several statements, and 
a different confidence value may be attached to each 
statement. This is done through the confidence report con-
cept, shown as C1 at the bottom of Figure 4. The confi-
dence report links a hypothesis statement to its confidence 
value and the triggered line of inquiry that generated it.  
The confidence report also allows assigning different con-
fidence values to the same statement, each resulting from 
different lines of inquiry. Recall that this is the case when 
we do not know how to combine the evidence from the 
analysis with different types of data, so we create separate 
lines of inquiry that are independently triggered and gener-
ate different revised hypotheses. 

 

Hypothesis Evolution through Continuous Da-
ta Analysis in DISK 

We have implemented our approach in the DISK frame-
work [Ratnakar 2016].  DISK uses a Data Catalog to match 
the query patterns of its lines of inquiry against the datasets 
available.  When new datasets are available, they are added 
to this catalog.  DISK is now able to run continuously and 
check its Data Catalog for new datasets in case new ones 
are added.  In addition, DISK now includes a coverage 
annotation for lines of inquiry, which indicates which lines 
of inquiry have broader scope so only the broader ones are 
triggered.  We have also extended DISK with a Provenance 
Catalog that records all the results of workflow executions 
so that they can be reused in subsequent analyses.  

The formal domain-independent ontology to represent 
DISK hypotheses, lines of inquiry, and the provenance of 
any revised hypotheses is available online [Ratnakar et al 
2016]. As the concepts on the top of Figure 3 show, this 
vocabulary extends the W3C PROV-O standard prove-
nance model [Lebo et al 2013], which makes it interopera-
ble with other provenance records coming from the data 
repositories themselves.   

In the rest of this section, we describe how DISK ad-
dresses continuous analysis of new data and hypothesis 
revision using data drawn from a seminal TCGA genomic 
and TCGA/CPTAC proteogenomic study of colon cancer 
[Zhang et al 2014].  This study spanned nearly 6 years.  
The data analysis component of the study required more 
than a year of effort from a team of 6 bioinformaticists 
using dozens of software tools and analysis scripts.  At the 

time, it was the very first proteogenomic study ever pub-
lished.  This year, 3 additional studies of this scope are 
being published by authors across the globe.  Each of these 
studies focused on just a small portion of the now available 
data.  DISK will make it possible for continuing ongoing 
re-analysis of such studies as new data is collected in 
TCGA and CPTAC.   

We use 84 datasets of genomic and proteomic data from 
42 different patient samples [Adusumilli 2016], which rep-
resents almost half of the cohort used in [Zhang et al 
2014].  This enables us to replicate a significant amount of 
the work, but requires less computation than using all the 
data from that study.  The size of each genomic dataset is 
around 2 GB, while proteomic files are 6 GB. We have 3 
different lines of inquiry with workflows that include 
popular omics analysis tools such as X!!Tandem [Bjornson 
et al 2008] and TopHat2 [Kim et al 2013], customProDB 
[Wang and Zhang 2013], SAMtools [Li 2009], Pep-
tideProphet [Keller et al 2002], and ProteinProphet [Nes-
vizhskii et al 2003].  When executed linearly, the work-
flows in the analysis take 336 CPU hours on a single ma-
chine. When parallelized, the CPU time is approximately 
35 hours. Just the intermediate and final data generated by 
each sample are 50 GB, with the output of a single run on 
the 42 samples around 2TB of data.  To demonstrate how 
DISK is able to continuously analyze new data and revise 
hypotheses, we create several scenarios where different 
slices of data become available in increments over time.  
We present now results from those scenarios.  Extensive 
documentation about the data, software, and workflows for 
the results reported here is in [Adusumilli et al 2016]. 

Availability of Additional Data of the Same Type  
In Scenario I, DISK was given an initial hypothesis that the 
NACA2 protein is associated with colon cancer. DISK was 
given initially 20 datasets with 10 RNA-seq files (ge-
nomic) and 10 mass-spectrometer files (proteomic) data for 
the same 10 patients at time t1.  Then, DISK was given 20 
additional datasets each at time t2, t3, and t4.  Table 1 
summarizes the scenario, showing the time points when 
data became available, the line of inquiry triggered, and the 
revised confidence for the hypotheses.  The analysis was 
not re-executed for data that was analyzed earlier.  Note 
that the confidence value of the hypothesis was reassessed 
at each time point, but the same value was obtained.  When 
the last dataset was added, the confidence increased. The 
confidence increased because there is strong protein-level 
evidence that a mutated form of the NACA2 protein is 
expressed in the dataset.  In addition, because the sample 
number had increased substantially, it is less likely that the 
results arose at random, thus increasing the confidence 
value. 



Table 1: Additional data of the same type results in revised confi-
dence values for the initial hypothesis. 

Scenario I 
 Datasets Triggered LOIs Confidence  
t1 20  Proteogenomic 0.5 
t2 +20 Proteogenomic 0.5 
t3 +20 Proteogenomic 0.5 
t4 +24 Proteogenomic 0.845 

 

Table 2: New types of data becoming available results in revised 
confidence values and perhaps revised hypotheses. 

Scenario II 
 Datasets 

added  
Data type Triggered 

LOIs 
Confidence 
value 

t1 20 RNA-seq Genomic 0.297 
t2 +20 Mass-spec Proteogenomic 0.5 
t3 +22 RNA-seq Genomic 0.297 
t4 +22 Mass-spec Proteogenomic 0.845 
 

Scenario III 
 Datasets 

added  
Data type Triggered 

LOIs 
Confidence 
value 

t1 20 Mass-spec Proteomic 0 
t2 +20 RNA-seq Proteogenomic 0.5 
t3 +22 Mass-spec Proteomic 0 
t4 +22 RNA-seq Proteogenomic 0.845 
 

Availability of New Kinds of Data 
DISK was given the same initial hypothesis, and then was 
given new kinds of data over time.  We show two scenarios 
where the data was given in a different order: Scenario II 
where genomic data appeared first and then proteomic da-
ta, and Scenario III where data appears in reverse order.   
 Table 2 summarizes the main events in each scenario, 
showing the time points when new data is available, lines 
of inquiry triggered, and the revised confidence value for 
the hypothesis.  We describe Scenario II here in detail.  
The explanation for Scenario III is analogous. 
 The first datasets available at time t1 were RNA-seq 
data for 20 patients.  This triggered a genomic line of in-
quiry, which resulted in a confidence value of 0.297. 
 Next, mass spectrometer data from samples of the same 
20 patients became available at time t2. This triggered 
three lines of inquiry: a genomics one (the same one that 
was just run but with the additional data), a proteomics 
one, and a proteogenomics one.  Since the proteogenomics 
one is annotated as having broader coverage than the two 
others, it was the only one triggered.  This analysis resulted 
in a confidence value of 0.5.  
 Later on, 22 additional datasets containing RNA se-
quencing data for 22 new patients became available at time 

t3.  DISK automatically triggered a genomic analysis that 
included those 22 patients plus the earlier 20.  The confi-
dence value did not increase.   

Note that at this point, DISK had two revised hypothe-
ses, both with the same statement (NACA2 is associated 
with colon cancer) but one with a confidence report that 
had a value of 0.297 linked to the genomic analysis going 
back to 42 datasets, and another with a confidence report 
that had a value of 0.5 linked to the proteogenomics analy-
sis based on only 20 datasets.   

At t4, mass spectrometer data from the second batch of 
22 patients became available. DISK matched three lines of 
inquiry again, each with the 22+20 datasets, and triggered 
only the proteogenomics one since it is annotated as having 
broader coverage.  The analysis produced a revised confi-
dence value of 0.845.  

Note that the final confidence value is the same in all 
scenarios because DISK sees the same cumulative data. 

Conclusions and Future Work 
DISK is a novel framework to test and revise hypotheses 
based on automatic analysis of scientific data repositories 
that grow over time. Given an input hypothesis, DISK is 
able to search for appropriate data to test it and revise it 
accordingly, and does this continuously as new data be-
comes available. DISK is also capable of triggering new 
kinds of analyses when new kinds of data become availa-
ble. The provenance of the revised hypotheses is recorded, 
with all the details of the analyses.  We have demonstrated 
DISK using multi-omics data from a seminal cancer study.   
 Future research includes extending DISK to generate 
interactive explanations for scientists based on provenance 
records, developing a general approach to the design of 
meta-workflows, handling more complex hypotheses, and 
exploring the use of this approach in other areas of science.  
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